```
Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / First exam
```

Started on	Tuesday, 24 November 2020, 3:51 PM
State	Finished
Completed on	Tuesday, 24 November 2020, 4:48 PM
Time taken	57 mins 9 secs
Grade	28.00 out of $30.00(93 \%)$

Question 1
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 4 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:
a. 0
b. 9
c. 5

- d. 7
\checkmark

The correct answer is: 7

Question 2
Correct
Mark 1.00 out of
1.00

If A is a 2×3-matrix, and $b=a_{2}$ (second column of A), then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
b. $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
с. $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$

- d. $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

```
Question 3
Correct
Mark 1.00 out of
1.00
    If }A\mathrm{ is a 2 }\times2\mathrm{ matrix with }\operatorname{det}(A)=-2\mathrm{ . Then }\operatorname{det}(\operatorname{adj}(A))
    Select one:
    a.2.
    (.) b. -2.
    c. -4.
    d. 4.
The correct answer is: -2.
```

```
Question 4
    If }A,B,C\mathrm{ are }n\timesn\mathrm{ nonsingular matrices, then }\mp@subsup{A}{}{2}-\mp@subsup{B}{}{2}=(A+B)(A-B
Correct
Mark 1.00 out of
1.00
Select one:
- a. False v
b. True
```

The correct answer is: False

```
Question 5
If \(A\) is a singular matrix, then \(A\) can be written as a product of elementary matrices.
Correct
Mark 1.00 out of
1.00
- a. False \(\checkmark\)
b. True
```

The correct answer is: False

Mark 1.00 out of
1.00

Select one:
a. $\left(\begin{array}{cc}5 & -1 \\ 2 & 6\end{array}\right)$

- b. $\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)$
c. $\left(\begin{array}{cc}-5 & -1 \\ 2 & -6\end{array}\right)$
d. $\left(\begin{array}{cc}-6 & 2 \\ -1 & -5\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}6 & -2 \\ 1 & 5\end{array}\right)$

```
Question }
Correct
Mark 1.00 out of
1.00
```

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then
Select one:
a. A and B are singular.
b. $A-B$ is singular.
c. A and B are nonsingular.
© d. $A-B$ is nonsingular.
\checkmark

The correct answer is: $A-B$ is nonsingular.

```
Question 8
Incorrect
Mark 0.00 out of
1.00
-
(b) True \(\mathbf{x}\)
```

The correct answer is: False

Question 9
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
b. The system $A x=0$ has only one solution
(-) c. A is singular.
d. A is the zero matrix

The correct answer is: A is singular.

Question 10
Correct
Mark 1.00 out of
1.00

If A is symmetric and skew symmetric then $A=0$. (A is skew symmetric if $A=-A^{T}$).
Select one:
a. False
© b. True \checkmark

The correct answer is: True

An $n \times n$ matrix A is invertible if and only if

Select one:

- a. there exists a matrix B such that $A B=I$
b. $A=I$
c. $|A|=0$
d. $A x=0$ has a nonzero solution

The correct answer is: there exists a matrix B such that $A B=I$
Question 12
Correct
Mark 1.00 out of
1.00

Question 13
Correct
Mark 1.00 out of
1.00

If A, B, C are $n \times n$-matrices with A nonsigular and $A B=A C$, then $B=C$
Select one:
a. False

- b. True \checkmark

The correct answer is: True

In the square linear system $A x=b$, if A is singular and b is not a linear combination of the columns of A then the system

Select one:
a. has a unique solution
b. has infinitely many solutions
c. can not tell

- d. has no solution

The correct answer is: has no solution

```
Question 14
Correct
Mark 1.00 out of
1.00
```

Any two $n \times n$-singular matrices are row equivalent.

Select one:

- a. False
b. True

The correct answer is: False

Question 15
Correct
Mark 1.00 out of
1.00

If A is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$

Select one:
a. is inconsistent
b. has a unique solution

- c. has either no solution or an infinite number of solutions
d. has infinitely many solutions.

```
Question }1
Correct
Mark 1.00 out of 1.00
```

Let A be a 3×4 matrix which has a row of zeros, and let B be a 4×4 matrix, then $A B$ has a row of zeros.
Select one:

- a. True $\sqrt{ }$
b. False

The correct answer is: True

```
Question 17
Correct
Mark 1.00 out of
1.00
```

If E is an elementary matrix of type III, then E^{T} is

Select one:
a. an elementary matrix of type II
b. an elementary matrix of type I

- c. an elementary matrix of type III \downarrow
d. not an elementary matrix

The correct answer is: an elementary matrix of type III

Question 18
Correct
Mark 1.00 out of 1.00

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by
Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$
© c. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 19
Incorrect
Mark 0.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 0 & 3 & 2 & 1\end{array}\right)$ is the augmented matrix of the system $A x=b$ then the system has no solution

Select one:

- a. False \boldsymbol{x}
b. True

The correct answer is: True
Question 20
Correct
Mark 1.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)$, then the system is inconsistent if
Select one:
a. $\alpha \neq 2$ and $\beta \neq-1$
b. $\alpha \neq 2$ and β any number
c. $\alpha=2$ and $\beta=-1$
(- d. $\alpha=2$ and $\beta \neq-1$

The correct answer is: $\alpha=2$ and $\beta \neq-1$

Question 21
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(5,2,4)^{T}$. Then the third column of the matrix A is

Select one:
a. $(-2,1,-3)^{T}$.
b. $(1,-1,-4)^{T}$.
© c. $(2,-1,3)^{T}$.
\checkmark
d. $(1,-1,4)^{T}$.

The correct answer is: $(2,-1,3)^{T}$.

Question 22
Correct
Mark 1.00 out of 1.00

If A is a nonsingular $n \times n$ matrix, then

Select one:

(a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.
b. $\operatorname{det}(A)=1$
c. There is a singular matrix C such that $A=C I$.
d. The system $A x=0$ has a nontrivial (nonzero) solution.

The correct answer is: There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.

```
Question 23
Correct
Mark 1.00 out of
1.00
```

 If \(A\) is a symmetric \(n \times n\)-matrix and \(P\) any \(n \times n\)-matrix, then \(P A P^{T}\) is
 Select one:

- a. symmetric \checkmark
b. not defined
c. singular
d. not symmetric

The correct answer is: symmetric

```
Question 24
Correct
Mark 1.00 out of
1.00
If \(A\) is an \(n \times n\) matrix and the system \(A x=b\) has infinitely many solutions, then
Select one:
a. \(A\) is symmetric
b. \(A\) has a row of zeros
- c. \(A\) singular
d. \(A\) is nonsingular
```

The correct answer is: A singular

```
Question 25
Correct
Mark 1.00 out of
1.00
If }A\mathrm{ is a 3 }\times3\mathrm{ matrix such that }\operatorname{det}(A)=2\mathrm{ , then det (3A)=6
Select one:
    O}\mathrm{ a. False 
    b. True
```

The correct answer is: False

Question 26
Correct
Mark 1.00 out of
1.00

If A, B, C are 3×3-matrices, $\operatorname{det}(A)=9, \operatorname{det}(B)=2, \operatorname{det}(C)=3$, then $\operatorname{det}\left(3 C^{T} B A^{-1}\right)=$ Select one:
a. 6
(b. 18
c. 16

- d. 2

The correct answer is: 18

Question 27
Correct
Mark 1.00 out of 1.00

If A and B are singular matrices, then $A+B$ is also singular.

Select one:

- a. False \downarrow
b. True

Question 28
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. no solution
b. a unique solution

- c. infinitely many solutions \checkmark
d. exactly two solutions

The correct answer is: infinitely many solutions

Question 29
Correct
Mark 1.00 out of
1.00
:---
a. False
b. True

The correct answer is: False
Question 30
Correct
Mark 1.00 out of
1.00

If A is a 3×3-matrix and the system $A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ has a unique solution, then the system $A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
Select one:
a. has infinitely many solutions

- b. has only the zero solution. \downarrow
c. is inconsistent

The correct answer is: has only the zero solution.

